Physics 12th Grade Syllabus, 12th grade cbse Syllabus, 12th standard Physics Syllabus, 12th std Syllabus, cbse 12th standard exam Syllabus, Cbse 12th Examination Syllabus, 12th grade school college Physics Syllabus, 12th standard exam Syllabus. Cbse exam Syllabus, Physics Syllabus SiteMap

# K2Questions.com

 5th Standard 6th Standard 7th Standard 8th Standard 9th Standard 10th Standard 11th Standard 12th Standard

Search to find Questions, Question Papers, Videos, Articles
 Class 12th Syllabus Accountancy sociology Agriculture Biology biotechnology Business Studies Chemistry Computer Science Economics Engineering Graphics English Entrepreneurship Geography History Home Science Informatics Practices Mathematics 12th standard Subject unit II Mathematics 12th standard Subject unit III Mathematics 12th standard Subject unit IV Mathematics 12th standard Subject unit V Mathematics 12th standard Subject unit VI Mathematics Multimedia and web technology Philosophy Physics Political Science Psychology
Class 12th >>
 Questions Book CBSE Syllabus Videos Question Paper Subjects CBSE Schools

###### Physics - CBSE 12th standard Syllabus

Class XII (Theory)
Total Periods : 180
One Paper Time: 3 Hours 70 Marks
Unit I Electrostatics 08
Unit II Current Electricity 07
Unit III Magnetic effect of current & Magnetism 08
Unit IV Electromagnetic Induction and Alternating current 08
Unit V Electromagnetic Waves 03
Unit VI Optics 14
Unit VII Dual Nature of Matter 04
Unit VIII Atoms and Nuclei 06
Unit IX Electronic Devices 07
Unit X Communication Systems 05
Total 70
Unit I: Electrostatics (Periods 25)
Electric Charges; Conservation of charge, Coulomb’s law-force between two point charges, forces
between multiple charges; superposition principle and continuous charge distribution.
Electric field, electric field due to a point charge, electric field lines, electric dipole, electric field
due to a dipole, torque on a dipole in uniform electric fleld.
89
Electric flux, statement of Gauss’s theorem and its applications to find field due to infinitely long
straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell
(field inside and outside).
Electric potential, potential difference, electric potential due to a point charge, a dipole and
system of charges; equipotential surfaces, electrical potential energy of a system of two point
charges and of electric dipole in an electrostatic field.
Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and
electric polarisation, capacitors and capacitance, combination of capacitors in series and in
parallel, capacitance of a parallel plate capacitor with and without dielectric medium between
the plates, energy stored in a capacitor. Van de Graaff generator.
Unit II: Current Electricity (Periods 22)
Electric current, flow of electric charges in a metallic conductor, drift velocity, mobility and their
relation with electric current; Ohm’s law, electrical resistance, V-I characteristics (linear and
non-linear), electrical energy and power, electrical resistivity and conductivity. Carbon resistors,
colour code for carbon resistors; series and parallel combinations of resistors; temperature
dependence of resistance.
Internal resistance of a cell, potential difference and emf of a cell,combination of cells in series
and in parallel.
Kirchhoff’s laws and simple applications. Wheatstone bridge, metre bridge.
Potentiometer - principle and its applications to measure potential difference and for comparing
emf of two cells; measurement of internal resistance of a cell.
Unit III: Magnetic Effects of Current and Magnetism (Periods 25)
Concept of magnetic field, Oersted’s experiment.
Biot - Savart law and its application to current carrying circular loop.
Ampere’s law and its applications to infinitely long straight wire. Straight and toroidal solenoids,
Force on a moving charge in uniform magnetic and electric fields. Cyclotron.
Force on a current-carrying conductor in a uniform magnetic field. Force between two parallel
current-carrying conductors-definition of ampere. Torque experienced by a current loop in uniform
magnetic field; moving coil galvanometer-its current sensitivity and conversion to ammeter and
voltmeter.
Current loop as a magnetic dipole and its magnetic dipole moment. Magnetic dipole moment of a
revolving electron. Magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and
perpendicular to its axis. Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; bar
magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements.
Para-, dia- and ferro - magnetic substances, with examples. Electromagnets and factors affecting
their strengths. Permanent magnets.
90
Unit IV: Electromagnetic Induction and Alternating Currents (Periods 20)
Electromagnetic induction; Faraday’s laws, induced emf and current; Lenz’s Law, Eddy currents.
Self and mutual induction.
Alternating currents, peak and rms value of alternating current/voltage; reactance and impedance;
LC oscillations (qualitative treatment only), LCR series circuit, resonance; power in AC circuits,
wattless current.
AC generator and transformer.
Unit V: Electromagnetic waves (Periods 4)
Need for displacement current, Electromagnetic waves and their characteristics (qualitative ideas
only). Transverse nature of electromagnetic waves.
Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X-rays, gamma
rays) including elementary facts about their uses.
Unit VI: Optics (Periods 30)
Reflection of light, spherical mirrors, mirror formula. Refraction of light, total internal reflection
and its applications, optical fibres, refraction at spherical surfaces, lenses, thin lens formula, lensmaker’s
formula. Magnification, power of a lens, combination of thin lenses in contact combination
of a lens and a mirror. Refraction and dispersion of light through a prism.
Scattering of light - blue colour of sky and reddish apprearance of the sun at sunrise and sunset.
Optical instruments : Human eye, image formation and accommodation correction of eye
defects (myopia, hypermetropia) using lenses. Microscopes and astronomical telescopes
(reflecting and refracting) and their magnifying powers.
Wave optics: Wave front and Huygen's principle, relection and refraction of plane wave at a
plane surface using wave fronts. Proof of laws of reflection and refraction using Huygen's principle.
Interference Young's double slit experiment and expression for fringe width, coherent sources
and sustained interference of light. Diffraction due to a single slit, width of central maximum.
Resolving power of microscopes and astronomical telescopes. Polarisation, plane polarised
light Brewster's law, uses of plane polarised light and Polaroids.
Unit VII: Dual Nature of Matter and Radiation (Periods 8)
Dual nature of radiation. Photoelectric effect, Hertz and Lenard’s observations; Einstein’s
photoelectric equation-particle nature of light.
Matter waves-wave nature of particles, de Broglie relation. Davisson-Germer experiment
(experimental details should be omitted; only conclusion should be explained).
91
Unit VIII: Atoms & Nuclei (Periods 18)
Alpha-particle scattering experiment; Rutherford’s model of atom; Bohr model, energy levels,
hydrogen spectrum.
Composition and size of nucleus, atomic masses, isotopes, isobars; isotones. Radioactivityalpha,
beta and gamma particles/rays and their properties; radioactive decay law.
Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number;
nuclear fission, nuclear fusion.
Unit IX: Electronic Devices (Periods 18)
Energy bands in solids (Qualitative ideas only) conductors, insulator and semiconductors;
semiconductor diode – I-V characteristics in forward and reverse bias, diode as a rectifier; I-V
characteristics of LED, photodiode, solar cell, and Zener diode; Zener diode as a voltage regulator.
Junction transistor, transistor action, characteristics of a transistor, transistor as an amplifier
(common emitter configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR).
Transistor as a switch.
Unit X: Communication Systems (Periods 10)
Elements of a communication system (block diagram only); bandwidth of signals (speech, TV
and digital data); bandwidth of transmission medium. Propagation of electromagnetic waves in
the atmosphere, sky and space wave propagation. Need for modulation. Production and detection
of an amplitude-modulated wave.
Practicals
Every student will perform atleast 15 experiments (7 from section A and 8 from Section B) The
activities mentioned here should only be for the purpose of demonstration. One Project of three
marks is to be carried out by the students.
B. Evaluation Scheme for Practical Examination: Total Periods : 60
Two experiments one from each section 8+8 Marks
Practical record (experiments & activities) 6 Marks
Project 3 Marks
Viva on experiments & project 5 Marks
92
Total 30 Marks
SECTION A
Experiments
(Any 7 experiments out of the following to be performed by the students)
1. To find resistance of a given wire using metre bridge and hence determine the specific
resistance of its material
2. To determine resistance per cm of a given wire by plotting a graph of potential difference
versus current.
3. To verify the laws of combination (series/parallel) of resistances using a metre bridge.
4. To compare the emf of two given primary cells using potentiometer.
5. To determine the internal resistance of given primary cell using potentiometer.
6. To determine resistance of a galvanometer by half-deflection method and to find its figure
of merit.
7. To convert the given galvanometer (of known resistance and figure of merit) into an ammeter
and voltmeter of desired range and to verify the same.
8. To find the frequency of the a.c. mains with a sonometer.
Activities
1. To measure the resistance and impedance of an inductor with or without iron core.
2. To measure resistance, voltage (AC/DC), current (AC) and check continuity of a given
circuit using multimeter.
3. To assemble a household circuit comprising three bulbs, three (on/off) switches, a fuse
and a power source.
4. To assemble the components of a given electrical circuit.
5. To study the variation in potential drop with length of a wire for a steady current.
6. To draw the diagram of a given open circuit comprising at least a battery, resistor/rheostat,
key, ammeter and voltmeter. Mark the components that are not connected in proper
order and correct the circuit and also the circuit diagram.
93
SECTION B
Experiments
(Any 8 experiments out of the following to be performed by the students)
1. To find the value of v for different values of u in case of a concave mirror and to find the
focal length.
2. To find the focal length of a convex mirror, using a convex lens.
3. To find the focal length of a convex lens by plotting graphs between u and v or between
1/u and 1/v.
4. To find the focal length of a concave lens, using a convex lens.
5. To determine angle of minimum deviation for a given prism by plotting a graph between
angle of incidence and angle of deviation.
6. To determine refractive index of a glass slab using a travelling microscope.
7. To find refractive index of a liquid by using (i) concave mirror, (ii) convex lens and plane
mirror.
8. To draw the I-V characteristic curve of a p-n junction in forward bias and reverse bias.
9. To draw the characteristic curve of a zener diode and to determine its reverse break
down voltage.
10. To study the characteristic of a common - emitter npn or pnp transistor and to find out the
values of current and voltage gains.
Activities (For the purpose of demonstration only)
1. To identify a diode, an LED, a transistor, and IC, a resistor and a capacitor from mixed
collection of such items.
2. Use of multimeter to (i) identify base of transistor (ii) distinguish between npn and pnp
type transistors (iii) see the unidirectional flow of current in case of a diode and an LED
(iv) check whether a given electronic component (e.g. diode, transistor or IC) is in working
order.
3. To study effect of intensity of light (by varying distance of the source) on an L.D.R.
4. To observe refraction and lateral deviation of a beam of light incident obliquely on a glass
slab.
5. To observe polarization of light using two Polaroids.
6. To observe diffraction of light due to a thin slit.
7. To study the nature and size of the image formed by (i) convex lens (ii) concave mirror, on
a screen by using a candle and a screen (for different distances of the candle from the lens/
mirror).
8. To obtain a lens combination with the specified focal length by using two lenses from the
given set of lenses.
94
SUGGESTED INVESTIGATORY PROJECTS
CLASS XII
1 To study various factors on which the internal resistance/emf of a cell depends.
2. To study the variations, in current flowing, in a circuit containing a LDR, because of a variation.
(a) in the power of the incandescent lamp, used to 'illuminate' the LDR. (Keeping all the lamps
at a fixed distance).
(b) in the distance of a incandescent lamp, (of fixed power), used to 'illuminate' the LDR.
3. To find the refractive indices of (a) water (b) oil (transparent) using a plane mirror, a equiconvex
lens, (made from a glass of known refractive index) and an adjustable object needle.
4. To design an appropriate logic gate combinatin for a given truth table.
5. To investigate the relation between the ratio of
(i) output and input voltage and
(ii) number of turns in the secondary coil and primary coil of a self designed transformer.
6. To investigate the dependence, of the angle of deviation, on the angle of incidence, using a hollow
prism filled, one by one, with different transparent fluids.
7. To estimate the charge induced on each one of the two identical styro foam (or pith) balls suspended
in a vertical plane by making use of Coulomb's law.
8. To set up a common base transistor circuit and to study its input and output characteristic and to
calculate its current gain.
9. To study the factor, on which the self inductance, of a coil, depends, by observing the effect of
this coil, when put in series with a resistor/(bulb) in a circuit fed up by an a.c. source of adjustable
frequency.
10. To construct a switch using a transistor and to draw the graph between the input and output
voltage and mark the cut-off, saturation and active regions.
11. To study the earth's magnatic field using a tangent galvanometer.
Recommended Textbooks.

### Free Videos

BA Questions BA DEGREE Articles BA DEGREE Question Paper BA DEGREE Free Books Download BA DEGREE Free Videos
BCOM Questions BCOM DEGREE Articles BCOM DEGREE Question Paper BCOM DEGREE Free Books Download BCOM DEGREE Free Videos
BSC Questions BSC DEGREE Articles BSC DEGREE Question Paper BSC DEGREE Free Books Download BSC DEGREE Free Videos
LLB Questions LLB DEGREE Articles LLB DEGREE Question Paper LLB DEGREE Free Books Download LLB DEGREE Free Videos
BBM Questions BBM DEGREE Articles BBM DEGREE Question Paper BBM DEGREE Free Books Download BBM DEGREE Free Videos
MA Questions MA DEGREE Articles MA DEGREE Question Paper MA DEGREE Free Books Download MA DEGREE Free Videos
MCOM Questions MCOM DEGREE Articles MCOM DEGREE Question Paper MCOM DEGREE Free Books Download MCOM DEGREE Free Videos
MSC Questions MSC DEGREE Articles MSC DEGREE Question Paper MSC DEGREE Free Books Download MSC DEGREE Free Videos
LLM Questions LLM DEGREE Articles LLM DEGREE Question Paper LLM DEGREE Free Books Download LLM DEGREE Free Videos
MBA MARKETING Questions MBA MARKETING Articles MBA MARKETING Question Paper MBA MARKETING Free Books Download MBA MARKETING Free Videos
MBA FINANCE Questions MBA FINANCE Articles MBA FINANCE Question Paper MBA FINANCE Free Books Download MBA FINANCE Free Videos
MBA HR Questions MBA HR Articles MBA HR Question Paper MBA HR Free Books Download MBA HR Free Videos
MBA OPERATIONS Questions MBA OPERATIONS Articles MBA OPERATIONS Question Paper MBA OPERATIONS Free Books Download MBA OPERATIONS Free Videos
MBA SYSTEMS Questions MBA SYSTEMS Articles MBA SYSTEMS Question Paper MBA SYSTEMS Free Books Download MBA SYSTEMS Free Videos